[]:

Assignment 5 - Equations differentielles ordinaires
May 27, 2025

1 Assignment 5: Equations différentielles ordinaires

Avant de voir le code disponible de ce test et avant de commencer a rédiger vos
réponses, prenez le temps de réfléchir a4 la maniére dont vous pouvez organiser le
travail.

o Pensez a quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.
o Réfléchissez a la structure de votre code (vous pouvez faire un brouillon sur

papier).
o Reéfléchissez aux sections du cours qui vous seront utiles pour I’analyse de vos
résultats.
Dans lintervalle [0,7] avec T = 8, on considére le systéme linéaire d’équations différentielles

ordinaires (EDO) suivante

{ yi(t) = yl(t)—2y2(t)+e5tTt
yé(t) = 991@) — 10y2(t) —e5T

En posant les conditions initiales y;(0) = 1, y5(0) = 1, ¢a s’écrit sous la forme
y'(t) = Ay(t) + b(t) pour t e (0,77,
y(0) =y,

ou

N e N e

Soit A > 0 le pas de temps. Pour n € N, on pose t,, = nh, b,, = b(t,,) et on désigne par u,, une
valeur approchée de la solution exacte y(t,,) au temps t,,.

o

import numpy as np
from scipy.linalg import eig
from scipy.integrate import simpson

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

[]1:

import matplotlib as mpl
from ODESystemLib import forwardEulerSystem, backwardEulerSystem
np.set_printoptions(precision=4, suppress=True, linewidth=120)

ODE problem setup

tsp = [t0, TI]

REMARK: to be constistent with the implementation of the methods,
A and b are defined as time-dependent functions,

even t1f in this case they are constant
lambda t : np.array([[i, -2], [9 , -10]1)
lambda t : np.array([np.exp(t/(5%T)), -np.exp(t/(5%T))])
lambda t, x : A(t)@ x + b(t)

oo %
I

yO = np.array([1, 1])

1.1 Partie 1

D’abord, on essaie résoudre le systéme d’EDO a l'aide de la méthode d’Euler progressive.

Sur la base de la théorie vue au cours, determiner le pas de temps maximale h* > 0 pour lequel la

méthode d’Euler progressive est stable. Justifier la réponse. (Commentaire 1)

Résoudre le systeme d’EDO pour h = 0.1h*, h = 0.9h* et h = h*, en utilisant la fonction suivante

(disponible dans ODESystemLib.py)

def forwardEulerSystem(fun, interval, yO, N)

"rr-Solve ordinary differential equations using the forward Euler method.

Inputs: [fun, interval, y0, NJ

fun : right-hand side term. It must be a callable (e.g. function, lambda),

that takes time (t) and solution (u) in input.
interval: integration interval, list of the form [tO, TJ.
y0: initial condition, list or numpy array.
N: number of discrete timesteps

Outputs: [t, ul

t : wector of discrete time instants where the solution <s approzimated.

u : solution approxzimation at the discrete time instants.

ninn

Dessiner le comportement des deux composantes de la solution dans le temps et donner un com-

mentaire sur la base des résultats obtenus. (Commentaire 2)

[1:|h_ref = ## COMPLETE HERE (mazimal step size for which forward Euler is stable)

1.1.1 Commentaire 1
TODO

[]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u0l1 = ## COMPLETE HERE (call method)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = ## COMPLETE HERE (call method)

prop = 1.0
Nh = int(T/(prop+*h_ref))
t10, ul0 = ## COMPLETE HERE (call method)

prop 2
Nh = int(T/(prop*h_ref))
t20, u20 = ## COMPLETE HERE (call method)

[1: fig, axs = plt.subplots(l, 4, sharey=False, figsize=(13,5))

axs[0] .plot(t01, uw01[0,:], '-o")
axs[0] .plot(t01, wO1[1,:], '-o'
axs[0] .set_title(r"$h = 0.1 \ h™*3$")

axs[1] .plot(t09, u09[0,:], '-o")
axs[1] .plot(t09, u09([1,:], '-o'
axs[1] .set_title(r"$h = 0.9 \ h™*3$")

axs[2] .plot(t10, u10[0,:], '-o")
axs[2] .plot(t10, ul0[1,:], '-o")
axs[2] .set_title(r"$h = h™*$")
axs[3] .plot(t20, u20[0,:], '-o
axs[3] .plot(t20, u20[1,:], '-o")
axs[3] .set_title(r"$h = 2 \ h™*$")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout ()

plt.show()
[1: fig, axs = plt.subplots(l, 4, sharey=False, figsize=(13,5))

def plot_state(t, u, ax, title):
segments = np.concatenate([u.T[:-1, Nonel, u.T[1:, Nonell], axis=1)
norm = plt.Normalize(tO, T)
lc = LineCollection(segments, cmap='plasma', norm=norm)
lc.set_array(t)
lc.set_linewidth(2)
line = ax.add_collection(lc)

ax.set_xlim(min(u[0]) - 0.05, max(u[0]) + 0.05)
ax.set_ylim(min(u[1]) - 0.05, max(ul[1]) + 0.05)
ax.set_title(title)

ax.set_xlabel('u_1', fontsize=16)
ax.set_ylabel('u_2%', fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

return

plot_state(t01, u01l, axs[0], r"$h = 0.1 \ h™*$")
plot_state(t09, u09, axs[1], r"$h = 0.9 \ h™*3$")
plot_state(t10, ul0, axs[2], r"$h = h™*$")
plot_state(t20, u20, axs[3], r"$h = 2 \ h™*$")

Add a shared colorbar outside the figure

cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
norm = plt.Normalize(tO, T)

sm = mpl.cm.ScalarMappable(cmap="plasma", norm=norm)
sm.set_array([])

cbar = fig.colorbar(sm, cax=cbar_ax)
cbar.set_label('Time', fontsize=16)

fig.tight_layout(rect=[0, 0, 0.9, 11)
plt.show()

1.1.2 Commentaire 2

TODO

1.2 Partie 2
Répeter la Partie 1, mais en considerant la méthode d’Euler rétrograde.

Pour approximer numeriquement la solution, la fonction suivante est mise a disposition dans la
librairie ODESystemLib.py:

[]1:

[]:

def backwardEulerSystem(A, b, interval, y0, N)
" Solve ordinary differential equations using the backward Euler method.

NOTE: this method is limited to the case of an affine right-hand side of the form
f(t,z) = A(t)z + b(t).

Inputs: [A, b, interval, y0, NJ
A : callable (e.g. function, lambda), returning the matriz A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [tO, TJ.
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, ul
t : vector of discrete time instants where the solution is approzimated.

u : solution approximation at the discrete time instants.
nnn

Donner un commentaire sur les résultats obtenus. En particulier, qu’est qu’on peut dire par rapport
a la stabilité de cette méthode? (Commentaire 3)

prop = 0.1
Nh = int(T/(prop*h_ref))
t01, w0l = ## COMPLETE HERE (call method)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = ## COMPLETE HERE (call method)

prop 1.0
Nh = int(T/(prop*h_ref))
t10, ul0 = ## COMPLETE HERE (call method)

prop = 2
Nh = int(T/(prop*h_ref))
t20, u20 = ## COMPLETE HERE (call method)

fig, axs = plt.subplots(l, 4, sharey=True, figsize=(13,5))
axs[0] .plot(t01, u01[0,:], '-o
axs[0] .plot(t01, uwO1[1,:]1, '-o')

axs[0] .set_title(r"$h = 0.1 \ h™*$")

axs[1] .plot(t09, u09[0,:], '-0o')
axs[1] .plot (t09, w09([1,:], '-o'
axs[1].set_title(r"$h = 0.9 \ h™*$")

axs[2] .plot(t10, u10[0,:], '-o")
axs[2] .plot(t10, ul0[1,:]1, '-o')
axs[2] .set_title(r"$h = h™x*$")

axs[3] .plot(t20, u20[0,:], '-0o")
axs[3] .plot(t20, u20[1,:]1, '-0o")
axs[3] .set_title(r"$h = 2 \ h™*§")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout()
plt.show()

1.2.1 Commentaire 3

TODO

1.3 Partie 3

Ecrire une fonction qui implemente la méthode de Crank-Nicholson, pour résoudre des équations
différentielles ordinaires linéaires, c-a-d avec f(t,x) = A(t)z + b(t). La fonction doit avoir la
structure suivante:

def CrankNicholsonSystem(A, b, interval, yO, N)
"rr-Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of the form f(t,z)

Inputs: [A, b, interval, y0, NJ
A : callable (e.g. function, lambda), returning the matriz A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [tO, TJ.
y0 : wnitial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, ul
t : wector of discrete time instants where the solution <s approzimated.

u : solution approximation at the discrete time instants.
ninn

On rappelle que, pour un generique terme de droite f(¢,y), la méthode de Crank-Nicholson s’écrit
de la fagon suivante:

U, = u, +3 <f<tn? un) + f(tn+17 un+1)>)

étant u, la donnée initiale.

[1: def CrankNicholsonSystem(A, b, interval, yO, N)
"r-Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of,
wthe form f(t,z) = A(t)z + b(t).

Inputs: [A, b, interval, y0, NJ

A : callable (e.g. function, lambda), returning the matriz A at ay
~given time instant.
b : callable (e.g. function, lambda), returning the vector b at ay

~given time instant.
interval : integration interval, list of the form [tO, TJ.
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, u]
t : wector of discrete time instants where the solution is approzimated.
u : solution approximation at the discrete time instants.

nimnn

number of solution components

d = yO0.size

time step

h = (interval[i] - interval[0]) / N

H*

time snapshots
= np.linspace(interval[0], interval[i], N+1)

ot

initialize the solution wvector
u = np.empty([d, N+1])
ul:, 0] = yO

time loop
for n in range(N)

COMPLETE HERE: Crank-Nicholson method solution update

return t, u

1.4 Partie 4

Choisir le pas de temps h = h*, calculé dans la Partie 1. Analyser numeriquement la stabilité de
la méthode de Crank-Nicholson, en résolvant 'EDO pour les mémes valeurs de h considerées dans
la Partie 1.

Donner un commentaire sur le résultats obtenus. Est-ce que la méthode est inconditionallement
stable? (Commentaire 4)

prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = ## COMPLETE HERE (call method)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = ## COMPLETE HERE (call method)

prop = 1.0
Nh = int(T/(prop*h_ref))
t10, ul0 = ## COMPLETE HERE (call method)

prop = 2.0
Nh = int(T/(prop*h_ref))
t20, u20 = ## COMPLETE HERE (call method)

fig, axs = plt.subplots(l, 4, sharey=True, figsize=(13,5))

axs[0] .plot(t01, u01[0,:], '-o'
axs[0] .plot(t01, uwO1[1,:]1, '-0o")
axs[0] .set_title(r"$h = 0.1 \ h™*$")

axs[1] .plot(t09, u09[0,:1, '-0o")
axs[1] .plot (t09, uw09([1,:], '-o'
axs[1] .set_title(r"$h = 0.9 \ h™*$")

axs[2] .plot(t10, ul0[0,:], '-o')
axs[2] .plot(t10, ul0[1,:]1, '-o')
axs[2] .set_title(r"$h = h™*$")

axs[3] .plot (20, u20[0,:]
axs[3] .plot(t20, u20[1,:]1, '-0o')
axs[3] .set_title(r"$h = 2 \ h™*$")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

[1:

plt.tight_layout ()
plt.show()

1.4.1 Commentaire 4

TODO

1.5 Partie 5

Finalement, on s’interesse a étudier I'ordre de convergence des differentes méthodes analysées dans
ce test.

Résolvez PEDO avec les méthodes de Euler progressif, Euler rétrograde et Crank-Nicholson pour
h = [%, %, %, 3—2] Considerez comme solution exacte celle obtenu avec la méthode de Crank-
Nicholson pour h = 1—2*8.
Calculez les erreurs par rapport a la solution exacte et dérivez (graphiquement) l'ordre de conver-
gence pour chaque méthode. Pour chaque valeur de h, ’erreur relative est calculée de la maniere

suivante

[

(ff a(t) —u(b)] dt) i

E, = - :
b e at

étant || - || la norme Euclidienne d’un vecteur, u(t) la solution obtenue numeriquement au temps ¢

et u(t) Vapproximation (par la méthode de Crank-Nicholson) de la solution exacte au méme temps.

L’integrale qui apparait dans la définition de l'erreur peut étre calculé en utilisant la fonction

simpson(u, x=t) de la librairie scipy.integrate, étant u la quantité a intégrer.

Donner un commentaire sur la base des résultats obtenus. Sont-ils en accord avec les attentes
théoriques? (Commentaire 5)

Aide: pour calculer la norme Euclidienne de la solution u € R**Nn — étant N,, le nombre de pas
temporels — utiliser la commande norm = np.linalg.norm(u, azis=0).

reference solution, approzimation of the exact solution

prop = 1 / 2%x8

Nh = int(T/(prop*h_ref))

t_ex, u_ex = ## COMPLETE HERE (call method)

u_ex_int = ## COMPLETE HERE (compute morm of exact solution, use simpson and np.
»linalg.norm)

convergence test
err FE, err BE, err CN = [1, [1, []

for k in range(1,6):
prop = 1 / 2%x*k
_Nh = int(T/(prop*h_ref))

[]1:

dts
plt
plt
plt
plt
plt
plt
plt
plt
plt
plt

plt

plt

subsampled exact solution --> USE THIS ONE FOR THE ERROR CALCULATION
u_ex_cur = u_ex[:, ::2**x(8-k)]

t, uw FE = ## COMPLETE HERE (call method)
err_FE.append() ## COMPLETE HERE (compute morm of exzact solution, use,
wsimpson and np.linalg.norm)

_, U_BE = ## COMPLETE HERE (call method)
err_BE.append() ## COMPLETE HERE (compute morm of exact solution, use,
wsimpson and np.linalg.norm)

_, U_CN = ## COMPLETE HERE (call method)
err_CN.append() ## COMPLETE HERE (compute morm of exact solution, use,
wsimpson and np.linalg.norm)

= np.array([h_ref / 2+xk for k in range(1,6)])

.figure()

.loglog(dts,
.loglog(dts,
.loglog(dts,

.loglog(dts,

err FE, '-o', label="FE")
err BE, '-o', label="BE")
err CN, '-o', label="CN")

(0.5 * err_BE[0] / dts[0]) * dts, '--',

color="black", label=r"$\sim h$")

.loglog(dts,

(0.5 * err_CN[0] / dts[0]**2) * dts**2, '--',

color="tab:gray", label=r"$\sim h~2$")

.grid(which='major', linestyle='--', linewidth=1)
.grid(which='minor', linestyle='--', linewidth=0.5)

.legend(fontsize=16)
.xlabel(r"h", fontsize=16)
.ylabel("Relative error", fontsize=16)

.show ()

1.5.1 Commentaire 5

TODO

2 Quelques petites questions finales (pas évaluées)

e What types of collaboration strategies did your group use?

— Work in pairs on different sections.
— Work individually on different sections.

10

— Work together on the same section with one notebook opened.
— Work together on the same section with multiple notebooks opened.
— Other (please specify).

o How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

o How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

Please report your answers here. Thank you!

11

	Assignment 5: Èquations différentielles ordinaires
	Partie 1
	Commentaire 1
	Commentaire 2

	Partie 2
	Commentaire 3

	Partie 3
	Partie 4
	Commentaire 4

	Partie 5
	Commentaire 5

	Quelques petites questions finales (pas évaluées)

